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The issue of the thermalization of an isolated quantum system is addressed by considering a perfect gas

confined by gravity and initially trapped above a certain height. As we are interested in the behavior of truly
isolated systems, we assume the gas is in a pure state of macroscopically well-defined energy. We show that,
in general, for single-particle distributions, such a state is strictly equivalent to the microcanonical mixed state
at the same energy. We derive an expression for the time-dependent gas density that depends on the initial gas
state only via a few thermodynamic parameters. Though we consider noninteracting particles, the density
relaxes into an asymptotic profile, but it is not the thermal equilibrium one determined by the gas energy and

particle number.
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I. INTRODUCTION

The dynamics of a quantum system under the influence of
a heat bath has been widely studied in recent decades. Under
these canonical conditions, the system relaxes into thermal
equilibrium at the bath temperature, provided the coupling to
the bath is weak enough [1]. Relaxation under microcanoni-
cal conditions, assumed in thermodynamics, is far less un-
derstood. A possible definition of microcanical conditions
might be an energy-conserving coupling to environmental
degrees of freedom [2,3]. As is well known, the measure-
ment process is convincingly accounted for by such a cou-
pling of the measurement apparatus to its environment: the
coherences between the measured system eigenstates are ge-
nerically destroyed, whereas the populations remain constant
[4-6]. Tt therefore seems difficult to regard the evolution
under such conditions as a relaxation process. However, one
can wonder whether physically relevant system degrees of
freedom relax toward their thermodynamic equilibrium val-
ues. This question is also of interest for truly isolated sys-
tems, i.e., in the absence of any coupling to environmental
degrees of freedom.

This issue is especially relevant for the n-particle reduced
density matrices of a many-body system. Recently, different
boson and fermion systems have been studied numerically
[7-10]. In these works, the system is initially prepared in the
ground state of a Hamiltonian different from that governing
the time evolution, and single-particle distributions are
evaluated. The distributions considered were found to relax
into thermal or nonthermal distributions irrespective of the
integrable or nonintegrable nature of the system. In [11], the
Joule expansion of an isolated perfect quantum gas was ob-
tained analytically. In this study, the gas is initially trapped in
a subregion of the entire accessible volume, but it is not
assumed to be in the corresponding ground state. Following
[2,3,12-14], a pure state of macroscopically well-defined en-
ergy has been considered, and the thermodynamic limit ex-
pression for the time-dependent particle number density has
been derived. Interestingly, for this single-particle distribu-
tion, the initial gas state is fully characterized by a few ther-
modynamic parameters, such as the gas energy and particle
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number or, equivalently, the corresponding microcanonical
temperature and chemical potential defined from derivatives
of the gas microcanonical entropy.

In this paper, we consider an isolated quantum gas con-
fined by a uniform gravitational field and a perfectly reflect-
ing wall. The gas is at first trapped above a certain height and
then left free to fall. Such experiments can be realized with
laser-cooled atoms, and bounces of both Bose-Einstein con-
densates and thermal clouds have been observed [15,16]. We
study the case of a perfect gas. The model we examine is
presented in the next section. In Sec. III, we discuss the
states of macroscopically well-defined energy. We show that,
for single-particle distributions, such a pure state is strictly
equivalent to the microcanonical mixed state at the same
energy. Our derivation is applicable to any many-body sys-
tem. For a perfect gas confined by gravity, we are able to
derive the time-dependent density profile in the limit of a
large particle number. This is done in Sec. IV. We obtain
damped oscillations of the gas density. However, the
asymptotic particle number density of the gas is far from the
thermal equilibrium one determined by the gas energy and
particle number. We then compare the relaxation behavior of
a truly isolated system to that of a system under the influence
of an environment. Finally, in the last section, we summarize
our results and draw conclusions.

II. MODEL

We consider a one-dimensional perfect gas confined by a
homogeneous gravitational field and an infinite potential
wall. The N particles of mass m constituting the gas are
described by the Hamiltonian

Ho=f dm//*(z)[— %r?f@//(zﬂmgab(z) . (D
0 m

where (z) creates a particle at position z and g is the ac-
celeration of the gravitational field. Throughout this paper,
we use units in which i=kz=1. The noninteracting Hamil-
tonian (1) can be easily generalized to higher dimensions. In
the following, we treat in detail only the one-dimensional

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.78.061112

S. CAMALET

(1D) case, but we also mention results for the 3D case. The
Hamiltonian (1) can be characterized by the microscopic en-
ergy €=(mg?/2)"? and length z,=(2m?g)~". For Rb atoms
in the Earth’s gravitational field, €, and z, are, respectively,
of the order of 10 nK and 0.1 wm. The single-particle
eigenenergies and normalized eigenfunctions of H are

(Z/Z0+ai)®( ) (2)

oA (a,)

where is the Heaviside step function, A(x)
=[ydt cos(*/3+xt)/ the Airy function [17], A" its deriva-
tive, and a,, its zeros. We label these zeros by positive inte-
gers in the order of increasing absolute values. Initially, the
gas is trapped above a certain height Z and hence described
by the Hamiltonian H, given by the expression (1) with the
lower limit O replaced by Z. The single-particle eigenener-
gies and eigenfunctions of H are simply €;;,=mgZ+ ¢, and

dzi=b(z-2).

¢,(2) =

III. MICROCANONICAL EVOLUTION

As mentioned in the Introduction, the gas is assumed to
be initially in a pure state of macroscopically well-defined
energy E,

W= > Ve, (3)

|a>EHE

where |a) refers to the N-particle eigenstates of the Hamil-
tonian H,. The Hilbert space H_ is spanned by the states |a)
corresponding to eigenenergies in the interval [E,E+ SE]
where OF is much smaller than E but much larger than the
maximum level spacing of H, in this interval. The subse-
quent time evolution of the gas is governed by the Hamil-
tonian H,,, which is different from H,. In this section, we first
show that, in the large-N limit, the time-dependent gas den-
sity is the same for almost all states (3) and equal to a mi-
crocanonical average at energy E of the particle number den-
sity operator. We stress that this result does not rely on the
specific form of the Hamiltonians H, and H,. Our derivation
does not even have recourse to their noninteracting nature.
We then discuss the particular Hamiltonian (1).

A. Microcanonical typicality
The gas density is given by
plz,1) = (W[ (2) gl 2)e™ M| W), (4)

To prove that p is the same for almost all states (3), we use,
following Refs. [11,13,14], the uniform measure on the unit
sphere in Hp,

(D-1)!
,u({‘lfa}) = 71_D 5(1 - ‘ 2 |\Pa|2> ’ (5)

ayeHg

where D is the dimension of Hz. We assume that, for large
N, this dimension is practically proportional to 6E and that a
density of states can thus be defined as n(E,N)=D/SE [18].
This density satisfies Boltzmann’s relation
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In D =1In[n(E,N)SE] = S(E,N), (6)

where S is the gas entropy.
We now evaluate the Hilbert space average and variance
of the number

z+0
Ny(z,1) = J dz'p(z',1) (7)

following from the normalized distribution (5). The above
length 6>0 can be as small as we want. For N> 1, the
reduced distribution of a finite number j of components
Vo), - V() equals TF_D exp(=D|W ,|*)/ . With this
Gaussian distribution, we obtain the Hilbert space variance

- 1 2
N#-Ni=— X
la).|B) eHE

+0
(alf dz'p(z’,1)| B) (®)

z

where p=exp(iHyt) /"y exp(—iHyt) and - denotes the aver-
age with respect to the measure (5). Upper bounding the sum
over the states |3) € Hy by a sum over all the N-particle
eigenstates |B) gives

_ 1 7+6 746
NE-NP<i f &z f e e )
z Z

where (+)=2)) 4, (a|*-|@)/D is a microcanonical average
at energy E. We reiterate that |@) are the eigenstates of the
Hamiltonian H. For the Hilbert space average of the density
p, we find (p). As the density-density correlation function on
the right side of (9) is positive, the Hilbert space variance of
Ns is lower than N?/D. Consequently, as D=exp(S)
~exp(N), this variance vanishes in the limit N> 1 and hence
p(z,1)={p(z,1)) for almost all states (3).

The above derivation is applicable to any single-particle
distribution (\I’|eiH0‘cpc e Hol| W), where ¢ —fdzxp(z)lﬂ (2),
and the wave functions y,, form a basis of the single-particle
Hilbert space. Moreover, since the only property of the ob-
servable A=/ §+5dz’ﬁ used in this calculation is (A?)
<exp(N), the equivalence between the average (W|---|¥)
and the microcanonical average (---) should be valid for a
large class of few-body observables. We remark that this
equivalence is obtained here for a typical state |¥), not for
an eigenstate |a). Contrary to Refs. [12,19], we have not
used any remarkable property of these eigenstates in our
derivation.

B. Perfect gas confined by gravity

For the noninteracting Hamiltonians Ho and Hy, it is use-
ful to define the creation operators c =f dzd)p (z)¢¥'(z) and
Cz given by similar expressions w1th ¢z, in place of ¢,
Wlth these definitions, the particle number density reads

p(z0) = 3 (cle )by by (D)o, (10)
P

where (--+}=2|4cn (@] -:|@)/D as shown above. Here, an
eigenstate |a) corresponds to a set of occupation numbers
{n} obeying Z;n;=N. For fermions, n, is restricted to the
values 0 and 1. The Hilbert space H, is spanned by the states
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|y satisfying E<3n;e,,<E+SE. The expression (10) can
be further simplified using the following standard arguments
[18]. The microcanonical probability distribution of the oc-
cupation number ny is P(ny)=i(E-niez;,N-n;)/n(E,N),
where 71 is the density of states of the Hamiltonian H,
—ez,kc;’kcz,k. This density obeys Boltzmann’s relation (6)

with the corresponding entropy S. Expanding this entropy in
the energy ni €z, <E and number n,<<N and taking into ac-

count that S=S in the large-N limit results in P(n;)
cexp[—n;(€z,—wm)/T], where the temperature T and chemi-
cal potential u are determined by

It

= 9:S(E,N), ==-0d\S(E,N). (11)

The microcanonical averages in Eq. (10) can thus be rewrit-
ten as

K)glk
E {plkXqlky

ék/T/é’_ 1 (12)

where the upper sign is for bosons and the lower sign is for
fermions, {=exp[(u—mgZ)/T], and

i _ AZz+a,)
(qlky = f dzy(D) iz - 2) = A'(a,)la, - ay+Zizy)

(13)

The second equality is derived in the Appendix.

Other choices than Eq. (3) are possible to describe a gas
state of macroscopic energy E. For example, due to the ex-
ponential N dependence (6) of the density n(E,N), one ob-
tains the same gas density p for typical states of Hy and of
the Hilbert space spanned by the eigenstates |{n,}) satisfying
Zm=N and Zne,,<E. We also remark that, in three di-
mensions, for a free horizontal propagation, the number of
particles p(z,7)dz between z and z+dz is given by Egs. (10)
and (12) with the thermal occupation function replaced by a
sum over horizontal modes determined by the initial confin-
ing potential. If, for example the gas is initially trapped in a
square of side length VS (mT)"'2, the thermal occupation
factor in Eq. (12) is replaced by
FmST In[1 ¥ { exp(—¢€,/T)]/2m. In this case, the behavior of
p is qualitatively similar to that discussed in the following.

IV. DAMPED BOUNCES

In this section, we derive the large-N limit expression for
the time-dependent gas density given by Egs. (10) and (12).
We find that it relaxes to an asymptotic density profile p,(z).
However, this density p.. is not the thermal equilibrium one
determined by E and N. It depends not only on these ther-
modynamic parameters but also on the height Z.

A. Temperature, chemical potential, and density profile of the
initial state

The temperature 7 and chemical potential u are deter-
mined by the gas energy E and particle number N via Eq.
(11) or via the more convenient relations
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o [units of A™']

z-Z [units of T/mg ]

FIG. 1. Initial particle number density as a function of height for
fermions, fugacity {=10, and temperatures T=2¢, and 5¢,. The
dashed line is the large-N limit.

V=S ).

k>0

E=¢> |ak|fg<|ak| >, (14)

k>0

where f,(x)=[exp(x)/{F 1]"". We remark that the fugacity {
defined above and the temperature 7' depend only on N and E
and not on the height Z. As the large zeros of the Airy func-
tion are essentially given by |a,|=(37k/2)%?, the density of
levels €,=€y|a;| increases with k and the above sums are
dominated by the contributions of zeros |a,| ~ T/ €, which are
very close to their large-k estimates. Moreover, for 7> ¢,
the sums (14) can be approximated by integrals [20] and
hence

7\32 7\52
N= <_> L), E= €0<_> I3,(0), (15)
EO EQ

where 1,({)=[;dxx"f/x)/ . For a Bose gas, these expres-
sions hold only for temperatures 7 above the condensation
temperature Tg=€,[N/1,,,(1)]*3. Below this temperature, the
right sides of the equalities (15) with {=1 give the noncon-
densed fraction of the initial state and the corresponding en-
ergy.

The initial  particle  number density  p(z,0)
=Z=of &/ T)¢,(z—Z)? can be evaluated in a similar man-
ner as follows. As the Airy function A(x) vanishes rapidly
with increasing x, the sum over k is dominated by the terms
|ay| = (z—2)/z,. For these terms, using the large negative x
approximation of A(x) and |A’(a;)| = 7"?|a,|"*, we find

1+ sinf4[|a;| - (z - 2)/z]"/3}
220l llag = (z = 2)1zo]"*

The contribution of the sine term to p(z,0) is negligible as it
oscillates strongly with k and we finally obtain the large-N
expression

dlz-2)* = (16)

p(2.0) = —— %g[wm—f@—a]@(z—zx (17)

VA 0 \Vx
where A=(2m/mT)"?x(&,/T)**T/mg is the de Broglie ther-
mal wavelength. The number of particles between z>Z and
z+dz is equal to that of free particles in a box of volume dz
at temperature 7 and chemical potential u—mgz. This ex-
pression does not describe the increase of p in the small
region z—Z=<A but is then very accurate; see Fig. 1. The
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results shown in Fig. 1 are obtained by numerical summation
over the exact eigenstates (2). The characteristic length scale
of the particle number density is thus essentially 7/mg for
{<<1. This length is of the order of 1 mm for Rb atoms at
0.1 mK in the Earth’s gravitational field. As { and T are
independent of Z, the thermal equilibrium density profile of
the gas described by the Hamiltonian H,, energy E, and par-
ticle number N is given by Eq. (17) with Z=0.

In the classical Maxwell-Boltzmann limit, A <<T/mgN,
the expression (17) simplifies to p(z,0) xexp[mg(Z—-z)/T].
This exponential decrease is always valid for large z. For a
Fermi gas, in the opposite limit, the expressions (15) and
(17) hold for a Fermi temperature Tr=¢,(37N/2)?*> ¢;. In
this case, Eq. (17) becomes p(z,0)x[1+mg(Z-z)/Tp]".
For a Bose gas below the temperature 7, the density profile
of the noncondensed gas is given by Eq. (17) with /=1,
whereas the particle number density of the condensate is pro-
portional to A(z/zy+a;)?, which practically vanishes for z
= z9=¢€y/mg. For T=< T}, the ratio of the sizes of the conden-
sate and thermal cloud is of the order of N~*3. We remark
that though Eq. (17) with {=1 diverges in the limit mg(z
—Z)/T—0, the number of noncondensed bosons between Z
and Z+z, is negligible.

B. Density relaxation

The time evolution of the density (10) can be character-
ized by the motion of the center of mass,

z6(0) = N‘lf dz zp(z,1). (18)
0

As detailed in the Appendix, by evaluating the second-order
derivative of z; and using the property d,¢,(0%)=(2mg)"?,
we find

dw
726(1) =25(0) + g f EJ(“’)U —cos(wt)],

J(w)=N"1D (c;c

P#q

PO w—€,+¢€). (19)

To determine the large-N limit of the function J, we first
rewrite it as

J(w):N‘IJ dzf dz' Q(z,z")
0 0

X > Sw-

P#q

&+ €) 2+ 2) (" +7), (20)

Vz.2) = 2 fAedT) b2 dil2)

k>0

l m . ’
~ K f dxf§|: ﬂ_xz + 7gz:|el27TX(Z—Z )/A. (21)
The approximate expression for { holds for [z—z'| < A. For
larger
ply related to the single-particle density matrix at initial time
(W (2)z"))=Q(z—-Z,7' - Z); see Eq. (17). Due to the factor
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]

FIG. 2. Gas center of mass as a function of time for fermions,
fugacity (=10, temperature 7=5¢,, and Z=T/mg. The dashed line
is the large-N limit. This approximation is excellent already for T
= 1060.

Q(z,7z’), the main contribution to the integral (20) comes
from the region z~T/mg and |z—z'|<A. The sum in the
expression (19) is thus dominated by the terms for which
€,.€,~T and |a,—a,|<(ey/T)"?. For these terms, €,—¢,
=1ey(p— q)(eo/e )”2 We use this approximation and re-
write the sum in Eq. (20) as a sum over ¢ and s=p—gq. For
T> €,, the sum over g is well approximated by an integral
and the second factor in the integrand in Eq. (20) is found to
vanish for |z—z'|> A. Consequently, the lower limit of the
integral over z' can be pushed to —o, and we obtain

ST dx

1 K ZJ bt

11/2(5) g)( ! x°
sin V(sm)% —x

3 ‘J’ 2 g
X ———————|1-cos|x —t) , (22)
AT = | 27

where Z=mgZ/T. We remark that, similarly to Ref. [11], it
remains a sum over a discrete index in this large-N expres-
sion. For Z~ T/mg, the time (Z/g)"? is of the order of 10 ms
for Rb atoms at 0.1 mK in the Earth’s gravitational field. To
better apprehend the characteristics of the many-body case
studied here, it is instructive to compare with the case of a
single particle. The average position of a particle can be
written in the form (19) and (20) with Z=0 and Q(z,z’)
replaced by ¢(z)*¢(z'), where ¢ is the initial wave function
of the particle. This density matrix is very different from ().
Its extent along and perpendicular to the diagonal 7z’ =z is the
same, whereas () is almost diagonal, which plays an essential
role in the above derivation.

In the limit +>(Z/g)"?, the contribution of the cosine
term in Eq. (22) vanishes. This expression thus describes the
relaxation of the center of mass z; to an asymptotic value
zg(%0). From Egs. (17) and (24), it can be shown that z;(®)
=z5(0)—Z/3. A gravitational potential energy of only
NmgZ/3 is converted into kinetic energy, whereas the poten-
tial energy difference between the initial density (17) and the
thermal equilibrium one given by Eq. (17) with Z=0 is
NmgZ. The function (22) is nonmonotonic; the motion of the
gas center of mass consists of damped oscillations (see Figs.
2 and 3). The results shown in Figs. 2, 4, and 5 are obtained
by numerical evaluation of the sums (19) and (10) with the

ZG(I) Z(;(O) + Z
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———=01,Z=T/mg

:" --------- {=100,Z=T/mg
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c

S F -

S -04f

o

N

‘o o

N

06F if

b W 1 1 1 1 1 1
0 4 12

8
t [ units of (2Z/g)1/2 ]

FIG. 3. Gas center of mass as a function of time in the large-N
limit for fermions and (£,mgZ/T)=(0.1,1), (100, 1), and (10, 5).

second form of the scalar product (13). For finite 7/ ¢, the
motion of the gas center of mass is not strictly a relaxation to
the asymptotic value zg(). The distance zg(f)—z5()
reaches values of the order of Z for times > (Z/g)">. How-
ever, these fluctuations disappear in the limit 7> €. For ex-
ample, for (=10 and Z=1, z5(f)—z5(e) is of the order of
0.04Z for t=40(Z/ g)"'* at T=5¢, but reaches again values of
the order of 0.02Z only for t=110(Z/g)"? at T=10¢,. The

dependence on ¢ and Z of the center-of-mass time evolution
(22) is not simple; see Fig. 3. We observe that the number of
bounces increases with Z and that the boson and fermion
curves are very close to each other already for {=0.1.

To obtain the large-N limit of the density (10), we write it
in a form similar to Egs, (19) and (20). In this case, the terms
p=q are present in the sum. Their contribution to the analog
of the function J is proportional to &) and hence gives rise
to a static component of the gas density, which we denote by
p-. The other terms can be evaluated with the help of the
approximations used above to derive Eq. (22). We find

4 — quXd
p(z,1) = p(2) + A NwZ D s . x_); cos(x\ / ;;Zt>

§>0

sin V(s7)% — x* cos \/(577)2 -z

, = ; (23)
V(sm)? = 2x%Z AGm 1y 5 |

where X=min(1,\Z/z). For the asymptotic particle number
density, we obtain

z [units of T/mg ]

FIG. 4. Gas density as a function of height for fermions, ¢
=0.1, Z=T/mg, T=50€, and times r=1.3(2Z/g)"? and
2.7(2Z/¢)"2. These times correspond to the first minimum and the
second maximum of the gas center of mass; see Fig. 3. The full
lines are the large-N density at the same times. The dashed line is
the large-N density at infinite time.

PHYSICAL REVIEW E 78, 061112 (2008)

8 —— t=20zig)? i

o [units of A']

z [units of T/mg ]

FIG. 5. Gas density as a function of height for bosons, conden-
sate fraction of 0.1, Z=T/mg, T=50¢), and times ¢=0 and
2(221¢)".

1 J‘w@(ﬂ(x—mgz/T) (x=2)"?

— | = = (24)
NaAJz x \/x—mgz/T ST

poc(z) =

The large-N expressions (23) and (24) agree very well with
the exact results already for 7/€,=50; see Fig. 4. For Z=0,
Eq. (24) simplifies to Eq. (17) with Z=0. In this case, the
density p remains constant and equal to the thermal equilib-
rium density profile determined by the Hamiltonian H, en-
ergy E, and number N. For Z#0, the asymptotic density
profile is very different from the thermal equilibrium one.
For z>T/mg, it coincides with the initial density (17). For
7<Z, the O function in Eq. (24) can be replaced by 1 and the
derivative d_p.. is obviously positive and diverges for z=Z.
The density p., thus assumes a maximum at a height z>Z;
see Fig. 4. This conclusion also applies to the 3D case men-
tioned at the end of Sec. III B. For a Bose gas below the
condensation temperature, the behavior of the condensate is
clearly different from that of the thermal cloud; see Fig. 5,
where the condensate fraction is 0.1. The particle number
density of the condensate at times multiple of 2(2Z/g)"? is
essentially identical to its initial density [16], whereas the
noncondensed gas relaxes to its asymptotic profile.

V. INFLUENCE OF AN ENVIRONMENT

Here, we compare the result of the relaxation process in
the presence and absence of a heat bath. If the gas is coupled
to a heat bath, the complete system consisting of the gas and
its environment is described by a product Hilbert space
Hgas® Heny and by a Hamiltonian of the form H=Hy+Hpg
+H,, where Hj is the bath Hamiltonian and H, the interaction
between the gas and the bath. In other words, the gas can
exchange only energy with its environment. Owing to the
coupling H,, the state of the gas, initially given by Eq. (3),
becomes mixed. To discuss the influence of the bath, we
rewrite the initial state Q=|W)¥| as

, V,= > ¥ (alay,  (25)
layeHE

Q=2 V¥ |a)b
a,b

where we denote by Latin letters the N-particle eigenstates of
the Hamiltonian H,. Two cases must be distinguished. In the
special case in which H, and H; commute, the gas Hamil-
tonian is a constant of motion and hence the populations
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|W > remain constant. In this case, the effect of the bath is
generically to destroy the coherences [5] and the gas state
turns asymptotically into

Q.= E |q,a|2|a><a| . (26)

The corresponding particle number density p..(z) is equal to
the constant component of Eq. (4). In the general case,
[H;,Hy]#0, provided the coupling to the bath is weak
enough, the asymptotic gas state is

Qean=2"2 eEdbla)(al, (27)

where Z=% , exp(-E,/Tg), E,, is the eigenenergy correspond-
ing to |a), and Tp is the bath temperature [1,14]. The gas
relaxes into thermal equilibrium at the temperature of the
bath.

If the gas is isolated, its state remains pure but, as seen in
the previous section, the particle number density can relax
into the steady component p,, of Eq. (4). Therefore, the
asymptotic density profile of the isolated gas is not modified
by an energy-conserving environment, i.e., such that
[H;,Hy]=0. However, the relaxation toward this density is
obviously different and depends on the details of the Hamil-
tonians Hy and H,. In the general case, if the coupling to the
bath is weak enough, the density profile p., determined by
the initial state |¥) can be observed in a transient regime
before the bath imposes its temperature on the gas.

VI. CONCLUSION

In this paper, we have studied an isolated perfect quantum
gas confined by gravity and initially trapped above a certain
height. The gas was assumed to be in a pure state of macro-
scopically well-defined energy and to evolve under
Schrodinger dynamics. We have derived the expression for
the time-dependent gas density profile in the limit of a large
particle number. This single-particle distribution was found
to depend not on the exact microscopic state of the gas but
only on a few thermodynamic parameters: the characteristic
height of the initial confinement, the microcanonical tem-
perature, and the temperature and chemical potential corre-
sponding to the gas energy and particle number. Damped
oscillations of the density profile were obtained. This relax-
ation behavior is a manifestation of the many-body nature of
the system. The time evolution of a single confined particle
is radically different. As an important consequence of this
difference, the time-dependent density of a Bose gas below
the condensation temperature consists of two clearly distin-
guishable components corresponding to the condensate and
the thermal cloud. However, though the gas density relaxes,
in general, toward a well-determined profile, this asymptotic
density is very different from the thermal equilibrium one
determined by the gas energy and particle number. Contrary
to the latter, the former depends also on the initial height of
the gas and presents a maximum.

We have also derived general results about the time evo-
lution of an isolated many-body system. We have shown that
the single-particle distributions of a typical pure state of
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macroscopically well-defined energy are identical to that of
the microcanonical mixed state at the same energy. We stress
that this equivalence holds for any many-body system; our
proof does not depend on the absence or presence of particle-
particle interactions. Moreover, as the single-particle distri-
butions are the same for almost all pure states of a given
macroscopic energy, the microcanonical results should be
valid for a large class of statistical ensembles and apply to
experimental measures obtained with different systems pre-
pared “under identical experimental conditions.” A coupling
of the system to environmental degrees of freedom modifies
the time evolution of the single-particle distributions. How-
ever, as discussed in the previous section, the asymptotic
distributions found assuming the system is truly isolated are
not changed by an energy-conserving environment and could
be observed in a transient regime if energy is exchanged with
the environment.

We finally comment about the particle-particle interac-
tions. We first emphasize that our results show that these
interactions are not necessary to obtain a relaxation behavior
of physically relevant degrees of freedom of a many-body
system. As we have seen, this behavior results from the prop-
erties of the microcanonical single-particle density matrix.
Furthermore, the dilute regime is experimentally accessible.
In this regime, for Bose gases, the interactions cannot be
neglected below the condensation temperature as the conden-
sate size is essentially fixed by the confining potential, but
they might play a minor role above this temperature [21].
The theoretical study of the influence of interactions between
the gas particles and other issues are left for future work.
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APPENDIX

To evaluate the scalar product (13), we write

f“ dxA(x + aq)[ﬁi - xJAx-X+ay)
X

=(ak—X)fxdxA(x+aq)A(x—X+ak) (A1)
X

oo

=—A(X+a,)dA(q) + aqf dxA(x +a)A(x - X+ ay),
X

(A2)

where X=7/z,. The first equality is obtained with the help of
the equation [&i—x]A(x):O and the second one using this
equation and integrations by parts. As A(a,)=0, the above
result for X=0 gives the orthogonality of the wave functions
¢ and ¢, and, for k=gq, the equality of the derivatives with
respect to X at X=0 of both sides gives the normalization
constant of ¢y.

By integrations by parts and using the fact that ¢, are the
one-particle eigenfunctions of the Hamiltonian (1) with Z
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=0, the time derivative of the gas center of mass (18) can be
written as

i . *
dzg= —E <c;cq>elt(€p_€q)J dz¢,(2)d,h,.  (A3)
Nm’,, 0

This expression is valid for any confining potential and sim-
ply states that the velocity of the gas center of mass is the
average momentum of the gas divided by its mass Nm. In the
same manner, we find

TFeo="5 2 (el Je ),

I (A4)

where we have used the normalization of the density (10)
and 9,¢,(0")=(2m?g)""? for any p. As (c/c,)=(c}c,) is real,
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Em&q(c;cq)/ (e,—€,)=0 and d,z5(0)=0. Consequently, the
center of mass zg is given by Eq. (19).

At initial time, the gas density vanishes at z=0 and hence
we expect an acceleration ﬂtzzG(O)=—g. This can be shown in
the following way. Let us consider a wave function ¢(z) that
vanishes for z<<h where h>0. We expand it on the basis
{¢,} and write its derivative at z=0 as

9.¢0(0) = (2m*g)'"? f dzp(2) 2, ¢,(2)=0.  (AS5)
0

)4

We deduce from this property of the sum X,¢,(z) that
E,,,q<c;cq)=0, where (c;cq> is given by Egs. (12) and (13).
Therefore, Ep¢q<c;cq)=—2p<c;cp)=—N and we obtain the ex-
pected initial acceleration.
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